Welcome to

MATH 595: Quantum Learning Theory

Spring 2026 — University of Illinois, Urbana-Champaign



Course Information

Welcome to MATH 595: Quantum Learning Theory! This course will survey the burgeoning field of quantum learning theory (QLT), which lies at the intersection of mathematics, theoretical computer science, and quantum information theory. QLT can be viewed as a quantum generalization of classical statistical learning theory. At its core, the goal of QLT is to quantify the resources (samples, measurements, memory, time, etc.) needed to test or learn a desired quantity. In this course, we will place a particular emphasis on understanding the effects that randomness, adaptivity, and measurement restrictions have on the sample complexity of various quantum state learning and testing tasks.

Contact & Communication

Please reach out if you have questions about course content, assignments, or logistics!

Assignments & Grading

There will be no mandatory homework or exams. We will work through problems at the end of most classes, and optional additional problems will provided at the end of each section of the notes.

Final Group Project

Grading will be based upon a final group project. All students will do a final project that distills a QLT paper into a guided tutorial-style problem that their peers could complete by that point in the course, highlighting open questions left by the paper. More details forthcoming!

Literature

We will utilize the following notes and surveys (many more to be added soon):

Classroom Climate & Inclusivity

People learn mathematics best when they feel respected and comfortable asking questions. In this course, we are committed to creating a supportive environment where everyone can engage fully in discourse and grow as mathematical thinkers.

Course Outline

The course will focus on the following canonical testing/learning problems and associated mathematical techniques:

Weekly Outline

Date Lecture Content Covered Reading Notes Additional Resources
1/20 1 Introduction; pure state discrimination None Lecture 1 Notes
1/22 2 Mixed state discrimination; total variation distance; trace distance None Lecture 2 Notes